Autonomous reinforcement learning with experience replay.

نویسندگان

  • Paweł Wawrzyński
  • Ajay Kumar Tanwani
چکیده

This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autonomous Reinforcement Learning with Experience Replay for Humanoid Gait Optimization

This paper demonstrates application of Reinforcement Learning to optimization of control of a complex system in realistic setting that requires efficiency and autonomy of the learning algorithm. Namely, Actor-Critic with experience replay (which addresses efficiency), and the Fixed Point method for step-size estimation (which addresses autonomy) is applied here to approximately optimize humanoi...

متن کامل

Prioritized Experience Replay

Experience replay lets online reinforcement learning agents remember and reuse experiences from the past. In prior work, experience transitions were uniformly sampled from a replay memory. However, this approach simply replays transitions at the same frequency that they were originally experienced, regardless of their significance. In this paper we develop a framework for prioritizing experienc...

متن کامل

A Deeper Look at Planning as Learning from Replay

In reinforcement learning, the notions of experience replay, and of planning as learning from replayed experience, have long been used to find good policies with minimal training data. Replay can be seen either as model-based reinforcement learning, where the store of past experiences serves as the model, or as a way to avoid a conventional model of the environment altogether. In this paper, we...

متن کامل

The Effects of Memory Replay in Reinforcement Learning

Experience replay is a key technique behind many recent advances in deep reinforcement learning. Allowing the agent to learn from earlier memories can speed up learning and break undesirable temporal correlations. Despite its widespread application, very little is understood about the properties of experience replay. How does the amount of memory kept affect learning dynamics? Does it help to p...

متن کامل

Real-time reinforcement learning by sequential Actor-Critics and experience replay

Actor-Critics constitute an important class of reinforcement learning algorithms that can deal with continuous actions and states in an easy and natural way. This paper shows how these algorithms can be augmented by the technique of experience replay without degrading their convergence properties, by appropriately estimating the policy change direction. This is achieved by truncated importance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013